Prints a progress bar and the metrics for training and validation.
Super class
mlr3torch::CallbackSet
-> CallbackSetProgress
Methods
Examples
task = tsk("iris")
learner = lrn("classif.mlp", epochs = 5, batch_size = 1,
callbacks = t_clbk("progress"), validate = 0.3)
learner$param_set$set_values(
measures_train = msrs(c("classif.acc", "classif.ce")),
measures_valid = msr("classif.ce")
)
learner$train(task)
#> Epoch 1 started (2025-02-08 11:18:56)
#>
#> [Summary epoch 1]
#> ------------------
#> Measures (Train):
#> * classif.acc = 0.31
#> * classif.ce = 0.69
#> Measures (Valid):
#> * classif.ce = 0.62
#> Epoch 2 started (2025-02-08 11:18:56)
#>
#> [Summary epoch 2]
#> ------------------
#> Measures (Train):
#> * classif.acc = 0.31
#> * classif.ce = 0.69
#> Measures (Valid):
#> * classif.ce = 0.56
#> Epoch 3 started (2025-02-08 11:18:57)
#>
#> [Summary epoch 3]
#> ------------------
#> Measures (Train):
#> * classif.acc = 0.55
#> * classif.ce = 0.45
#> Measures (Valid):
#> * classif.ce = 0.44
#> Epoch 4 started (2025-02-08 11:18:57)
#>
#> [Summary epoch 4]
#> ------------------
#> Measures (Train):
#> * classif.acc = 0.57
#> * classif.ce = 0.43
#> Measures (Valid):
#> * classif.ce = 0.49
#> Epoch 5 started (2025-02-08 11:18:58)
#>
#> [Summary epoch 5]
#> ------------------
#> Measures (Train):
#> * classif.acc = 0.51
#> * classif.ce = 0.49
#> Measures (Valid):
#> * classif.ce = 0.60
#> Finished training for 5 epochs (2025-02-08 11:18:58)