Ingress for a single lazy_tensor
column.
Parameters
shape
::integer()
|NULL
|"infer"
The shape of the tensor, where the first dimension (batch) must beNA
. When it is not specified, the lazy tensor input column needs to have a known shape. When it is set to"infer"
, the shape is inferred from an example batch.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Other Graph Network:
ModelDescriptor()
,
TorchIngressToken()
,
mlr_learners_torch_model
,
mlr_pipeops_module
,
mlr_pipeops_torch
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
model_descriptor_to_learner()
,
model_descriptor_to_module()
,
model_descriptor_union()
,
nn_graph()
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorchIngress
-> PipeOpTorchIngressLazyTensor
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchIngressLazyTensor$new(
id = "torch_ingress_ltnsr",
param_vals = list()
)
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
po_ingress = po("torch_ingress_ltnsr")
task = tsk("lazy_iris")
md = po_ingress$train(list(task))[[1L]]
ingress = md$ingress
x_batch = ingress[[1L]]$batchgetter(data = task$data(1, "x"), cache = NULL)
x_batch
#> torch_tensor
#> 5.1000 3.5000 1.4000 0.2000
#> [ CPUFloatType{1,4} ]
# Now we try a lazy tensor with unknown shape, i.e. the shapes between the rows can differ
ds = dataset(
initialize = function() self$x = list(torch_randn(3, 10, 10), torch_randn(3, 8, 8)),
.getitem = function(i) list(x = self$x[[i]]),
.length = function() 2)()
task_unknown = as_task_regr(data.table(
x = as_lazy_tensor(ds, dataset_shapes = list(x = NULL)),
y = rnorm(2)
), target = "y", id = "example2")
# this task (as it is) can NOT be processed by PipeOpTorchIngressLazyTensor
# It therefore needs to be preprocessed
po_resize = po("trafo_resize", size = c(6, 6))
task_unknown_resize = po_resize$train(list(task_unknown))[[1L]]
# printing the transformed column still shows unknown shapes,
# because the preprocessing pipeop cannot infer them,
# however we know that the shape is now (3, 10, 10) for all rows
task_unknown_resize$data(1:2, "x")
#> x
#> <lazy_tensor>
#> 1: <tnsr[]>
#> 2: <tnsr[]>
po_ingress$param_set$set_values(shape = c(NA, 3, 6, 6))
md2 = po_ingress$train(list(task_unknown_resize))[[1L]]
ingress2 = md2$ingress
x_batch2 = ingress2[[1L]]$batchgetter(
data = task_unknown_resize$data(1:2, "x"),
cache = NULL
)
x_batch2
#> torch_tensor
#> (1,1,.,.) =
#> -0.4820 -0.6014 0.2048 0.2400 -1.2130 0.7390
#> 0.1017 0.6550 -1.1736 0.4113 -0.1666 0.1676
#> 0.0856 -0.7368 -0.3105 -0.6110 0.4236 0.0358
#> 0.7203 0.6802 -0.2861 -0.7900 1.1208 0.3715
#> 0.6136 0.7728 -0.2040 0.0138 0.0718 0.7143
#> -0.1126 -0.6623 -0.2696 0.7813 -0.1420 -0.2629
#>
#> (2,1,.,.) =
#> -0.4152 -0.3206 0.1427 0.2588 0.5597 0.3812
#> -0.6023 0.1647 0.4084 -0.4836 0.4661 0.3741
#> -0.0667 -0.2337 0.1048 0.7033 -0.0112 1.2315
#> 0.4290 0.3100 1.1125 0.9935 -0.1940 1.2613
#> 0.8209 0.5903 1.0358 0.1748 -0.1165 0.6891
#> 0.7436 -0.2710 1.0077 0.1441 0.4835 -0.0618
#>
#> (1,2,.,.) =
#> 0.0936 -0.9275 0.2406 0.7763 -0.1310 0.1686
#> 0.4995 0.3556 0.6104 0.8789 -0.7602 -0.1945
#> 0.6145 -0.3913 -1.3331 -0.4600 -0.5303 0.6767
#> 0.1573 0.3284 -0.2850 -0.5249 -1.4389 -0.0380
#> -0.3104 0.2876 -0.1796 0.4837 0.3535 0.1406
#> 0.4561 -0.5029 -1.0767 -0.0497 0.0320 0.7137
#>
#> (2,2,.,.) =
#> 0.6493 0.0412 -0.0125 -0.1096 -0.8545 0.2099
#> 1.5369 -0.0279 -0.6421 -0.6850 0.2357 -0.4109
#> -0.1722 -0.9622 -0.6868 0.9367 1.0593 0.0501
#> 1.2424 -0.2208 -0.6440 -0.2581 0.8786 -0.9802
#> 0.7802 0.2666 0.1963 -0.2865 -0.5482 -0.4808
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{2,3,6,6} ]