Ingress for a single lazy_tensor
column.
Parameters
shape
::integer()
|NULL
|"infer"
The shape of the tensor, where the first dimension (batch) must beNA
. When it is not specified, the lazy tensor input column needs to have a known shape. When it is set to"infer"
, the shape is inferred from an example batch.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_ft_cls
,
mlr_pipeops_nn_ft_transformer_block
,
mlr_pipeops_nn_geglu
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_identity
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_reglu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_tokenizer_categ
,
mlr_pipeops_nn_tokenizer_num
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Other Graph Network:
ModelDescriptor()
,
TorchIngressToken()
,
mlr_learners_torch_model
,
mlr_pipeops_module
,
mlr_pipeops_torch
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
model_descriptor_to_learner()
,
model_descriptor_to_module()
,
model_descriptor_union()
,
nn_graph()
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorchIngress
-> PipeOpTorchIngressLazyTensor
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchIngressLazyTensor$new(
id = "torch_ingress_ltnsr",
param_vals = list()
)
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
po_ingress = po("torch_ingress_ltnsr")
task = tsk("lazy_iris")
md = po_ingress$train(list(task))[[1L]]
ingress = md$ingress
x_batch = ingress[[1L]]$batchgetter(data = task$data(1, "x"), cache = NULL)
x_batch
#> torch_tensor
#> 5.1000 3.5000 1.4000 0.2000
#> [ CPUFloatType{1,4} ]
# Now we try a lazy tensor with unknown shape, i.e. the shapes between the rows can differ
ds = dataset(
initialize = function() self$x = list(torch_randn(3, 10, 10), torch_randn(3, 8, 8)),
.getitem = function(i) list(x = self$x[[i]]),
.length = function() 2)()
task_unknown = as_task_regr(data.table(
x = as_lazy_tensor(ds, dataset_shapes = list(x = NULL)),
y = rnorm(2)
), target = "y", id = "example2")
# this task (as it is) can NOT be processed by PipeOpTorchIngressLazyTensor
# It therefore needs to be preprocessed
po_resize = po("trafo_resize", size = c(6, 6))
task_unknown_resize = po_resize$train(list(task_unknown))[[1L]]
# printing the transformed column still shows unknown shapes,
# because the preprocessing pipeop cannot infer them,
# however we know that the shape is now (3, 10, 10) for all rows
task_unknown_resize$data(1:2, "x")
#> x
#> <lazy_tensor>
#> 1: <tnsr[]>
#> 2: <tnsr[]>
po_ingress$param_set$set_values(shape = c(NA, 3, 6, 6))
md2 = po_ingress$train(list(task_unknown_resize))[[1L]]
ingress2 = md2$ingress
x_batch2 = ingress2[[1L]]$batchgetter(
data = task_unknown_resize$data(1:2, "x"),
cache = NULL
)
x_batch2
#> torch_tensor
#> (1,1,.,.) =
#> -0.4941 -1.2558 -0.4665 1.2317 0.1428 -0.3502
#> -0.0243 -0.0053 0.5467 0.1433 1.3230 1.6530
#> 0.2757 -2.2166 0.7282 0.5543 -0.0141 -0.6989
#> -0.2952 0.9830 0.6053 0.2265 -0.3719 -0.1657
#> -0.3462 0.0988 0.1806 1.1139 -0.1048 1.2164
#> 0.1234 -0.5640 0.1725 0.4996 0.4699 -1.1743
#>
#> (2,1,.,.) =
#> -0.0244 -0.1409 -0.8144 -0.5149 0.6807 0.4461
#> -0.8833 -0.8215 -0.9377 0.5407 0.4795 -0.2554
#> -1.1915 -0.2810 -0.2540 0.3984 0.3762 -0.3490
#> -0.2218 0.1248 -1.9129 -0.6725 0.0865 -0.0805
#> 0.1165 0.2668 -0.5083 0.1434 0.0134 0.2256
#> 0.4814 -0.3567 -0.0514 0.7702 0.9796 -0.4909
#>
#> (1,2,.,.) =
#> 0.5968 -0.0524 1.0976 0.6791 -0.8675 -0.2652
#> 1.1666 -1.5480 -2.0294 0.4562 0.5996 -0.2210
#> -1.1041 -0.7811 0.2758 -0.3874 0.5777 0.5696
#> 0.1676 -1.5120 -0.8298 0.3471 0.4286 -0.0830
#> -0.1627 0.7482 0.6881 -0.5818 0.5072 -0.2381
#> -0.3550 0.0926 0.5741 0.6036 0.5423 -0.9063
#>
#> (2,2,.,.) =
#> 0.6459 0.9261 0.8501 -0.2912 -0.0516 -0.6573
#> 0.4473 0.4591 -0.1888 0.6830 0.0001 0.9950
#> -0.4024 0.7719 1.4069 0.1655 -0.6569 -0.0173
#> -0.3098 -0.1589 0.8999 -0.3524 -0.4691 -0.0928
#> -0.2284 -0.8328 0.4478 0.5681 0.5113 -0.4094
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{2,3,6,6} ]