Ingress for a single lazy_tensor
column.
Parameters
shape
::integer()
|NULL
|"infer"
The shape of the tensor, where the first dimension (batch) must beNA
. When it is not specified, the lazy tensor input column needs to have a known shape. When it is set to"infer"
, the shape is inferred from an example batch.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_ft_cls
,
mlr_pipeops_nn_geglu
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_identity
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_reglu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_tokenizer_categ
,
mlr_pipeops_nn_tokenizer_num
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Other Graph Network:
ModelDescriptor()
,
TorchIngressToken()
,
mlr_learners_torch_model
,
mlr_pipeops_module
,
mlr_pipeops_torch
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
model_descriptor_to_learner()
,
model_descriptor_to_module()
,
model_descriptor_union()
,
nn_graph()
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorchIngress
-> PipeOpTorchIngressLazyTensor
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchIngressLazyTensor$new(
id = "torch_ingress_ltnsr",
param_vals = list()
)
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
po_ingress = po("torch_ingress_ltnsr")
task = tsk("lazy_iris")
md = po_ingress$train(list(task))[[1L]]
ingress = md$ingress
x_batch = ingress[[1L]]$batchgetter(data = task$data(1, "x"), cache = NULL)
x_batch
#> torch_tensor
#> 5.1000 3.5000 1.4000 0.2000
#> [ CPUFloatType{1,4} ]
# Now we try a lazy tensor with unknown shape, i.e. the shapes between the rows can differ
ds = dataset(
initialize = function() self$x = list(torch_randn(3, 10, 10), torch_randn(3, 8, 8)),
.getitem = function(i) list(x = self$x[[i]]),
.length = function() 2)()
task_unknown = as_task_regr(data.table(
x = as_lazy_tensor(ds, dataset_shapes = list(x = NULL)),
y = rnorm(2)
), target = "y", id = "example2")
# this task (as it is) can NOT be processed by PipeOpTorchIngressLazyTensor
# It therefore needs to be preprocessed
po_resize = po("trafo_resize", size = c(6, 6))
task_unknown_resize = po_resize$train(list(task_unknown))[[1L]]
# printing the transformed column still shows unknown shapes,
# because the preprocessing pipeop cannot infer them,
# however we know that the shape is now (3, 10, 10) for all rows
task_unknown_resize$data(1:2, "x")
#> x
#> <lazy_tensor>
#> 1: <tnsr[]>
#> 2: <tnsr[]>
po_ingress$param_set$set_values(shape = c(NA, 3, 6, 6))
md2 = po_ingress$train(list(task_unknown_resize))[[1L]]
ingress2 = md2$ingress
x_batch2 = ingress2[[1L]]$batchgetter(
data = task_unknown_resize$data(1:2, "x"),
cache = NULL
)
x_batch2
#> torch_tensor
#> (1,1,.,.) =
#> -0.4775 0.0255 -0.0239 0.9196 -0.5132 -0.4756
#> 0.3136 -0.3810 1.3138 -1.2020 0.6984 1.0977
#> -0.0836 0.1381 -0.9553 -0.5240 0.9292 0.3007
#> 0.0116 0.3905 -0.6231 -0.5331 0.2434 0.1312
#> 0.4132 -1.2144 -0.7825 -0.7361 0.7629 0.1045
#> 0.6703 -0.0160 0.5551 1.1770 0.9359 -0.4131
#>
#> (2,1,.,.) =
#> 0.3987 0.2308 -0.1620 -0.6996 -0.5333 0.1525
#> -0.6417 0.3319 0.2565 0.0923 0.3467 -1.0374
#> -0.0106 0.2520 -0.2120 -1.5523 -0.1860 -0.6193
#> -1.2542 -0.1117 0.6247 0.2547 -0.2636 -0.2398
#> -0.8627 0.9669 -0.2198 -0.0527 0.1712 0.1779
#> -0.4269 -0.2861 -0.0472 0.3822 -0.4859 -0.0685
#>
#> (1,2,.,.) =
#> 0.7945 1.4024 0.3143 -0.3704 -0.5493 1.2960
#> -0.2191 0.9293 0.1202 -0.6510 0.8861 -0.6804
#> -0.6749 -1.1003 0.6359 0.8225 -0.7043 1.1212
#> -0.4542 0.7239 0.8694 0.6665 -0.8297 0.3425
#> -0.0033 -0.6752 1.4276 0.4731 -0.3946 0.3245
#> -0.0021 0.0672 -0.2231 -0.2045 0.2251 -0.5689
#>
#> (2,2,.,.) =
#> 0.4125 0.5042 -1.2671 -0.7839 -0.9707 -0.1300
#> 0.2000 -0.2342 0.3893 0.3841 -0.3790 -0.2730
#> 0.0527 0.1317 -0.1509 0.0744 -0.0678 0.4677
#> 0.3922 0.0941 0.9014 -0.7035 -0.0994 0.7001
#> -0.1943 -0.0966 -1.3388 0.4731 0.6479 -0.3813
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{2,3,6,6} ]