Applies a 1D average pooling over an input signal composed of several input planes.
nn_module
Calls nn_avg_pool1d() during training.
Parameters
kernel_size:: (integer())
The size of the window. Can be a single number or a vector.stride::integer()
The stride of the window. Can be a single number or a vector. Default:kernel_size.padding::integer()
Implicit zero paddings on both sides of the input. Can be a single number or a vector. Default: 0.ceil_mode::integer()
WhenTRUE, will use ceil instead of floor to compute the output shape. Default:FALSE.count_include_pad::logical(1)
WhenTRUE, will include the zero-padding in the averaging calculation. Default:TRUE.divisor_override::logical(1)
If specified, it will be used as divisor, otherwise size of the pooling region will be used. Default: NULL. Only available for dimension greater than 1.
Input and Output Channels
One input channel called "input" and one output channel called "output".
For an explanation see PipeOpTorch.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d,
mlr_pipeops_nn_adaptive_avg_pool2d,
mlr_pipeops_nn_adaptive_avg_pool3d,
mlr_pipeops_nn_avg_pool2d,
mlr_pipeops_nn_avg_pool3d,
mlr_pipeops_nn_batch_norm1d,
mlr_pipeops_nn_batch_norm2d,
mlr_pipeops_nn_batch_norm3d,
mlr_pipeops_nn_block,
mlr_pipeops_nn_celu,
mlr_pipeops_nn_conv1d,
mlr_pipeops_nn_conv2d,
mlr_pipeops_nn_conv3d,
mlr_pipeops_nn_conv_transpose1d,
mlr_pipeops_nn_conv_transpose2d,
mlr_pipeops_nn_conv_transpose3d,
mlr_pipeops_nn_dropout,
mlr_pipeops_nn_elu,
mlr_pipeops_nn_flatten,
mlr_pipeops_nn_ft_cls,
mlr_pipeops_nn_ft_transformer_block,
mlr_pipeops_nn_geglu,
mlr_pipeops_nn_gelu,
mlr_pipeops_nn_glu,
mlr_pipeops_nn_hardshrink,
mlr_pipeops_nn_hardsigmoid,
mlr_pipeops_nn_hardtanh,
mlr_pipeops_nn_head,
mlr_pipeops_nn_identity,
mlr_pipeops_nn_layer_norm,
mlr_pipeops_nn_leaky_relu,
mlr_pipeops_nn_linear,
mlr_pipeops_nn_log_sigmoid,
mlr_pipeops_nn_max_pool1d,
mlr_pipeops_nn_max_pool2d,
mlr_pipeops_nn_max_pool3d,
mlr_pipeops_nn_merge,
mlr_pipeops_nn_merge_cat,
mlr_pipeops_nn_merge_prod,
mlr_pipeops_nn_merge_sum,
mlr_pipeops_nn_prelu,
mlr_pipeops_nn_reglu,
mlr_pipeops_nn_relu,
mlr_pipeops_nn_relu6,
mlr_pipeops_nn_reshape,
mlr_pipeops_nn_rrelu,
mlr_pipeops_nn_selu,
mlr_pipeops_nn_sigmoid,
mlr_pipeops_nn_softmax,
mlr_pipeops_nn_softplus,
mlr_pipeops_nn_softshrink,
mlr_pipeops_nn_softsign,
mlr_pipeops_nn_squeeze,
mlr_pipeops_nn_tanh,
mlr_pipeops_nn_tanhshrink,
mlr_pipeops_nn_threshold,
mlr_pipeops_nn_tokenizer_categ,
mlr_pipeops_nn_tokenizer_num,
mlr_pipeops_nn_unsqueeze,
mlr_pipeops_torch_ingress,
mlr_pipeops_torch_ingress_categ,
mlr_pipeops_torch_ingress_ltnsr,
mlr_pipeops_torch_ingress_num,
mlr_pipeops_torch_loss,
mlr_pipeops_torch_model,
mlr_pipeops_torch_model_classif,
mlr_pipeops_torch_model_regr
Super classes
mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> mlr3torch::PipeOpTorchAvgPool -> PipeOpTorchAvgPool1D
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchAvgPool1D$new(id = "nn_avg_pool1d", param_vals = list())Arguments
id(
character(1))
Identifier of the resulting object.param_vals(
list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
# Construct the PipeOp
pipeop = po("nn_avg_pool1d")
pipeop
#> PipeOp: <nn_avg_pool1d> (not trained)
#> values: <list()>
#> Input channels <name [train type, predict type]>:
#> input [ModelDescriptor,Task]
#> Output channels <name [train type, predict type]>:
#> output [ModelDescriptor,Task]
# The available parameters
pipeop$param_set
#> <ParamSet(5)>
#> id class lower upper nlevels default value
#> <char> <char> <num> <num> <num> <list> <list>
#> 1: kernel_size ParamUty NA NA Inf <NoDefault[0]> [NULL]
#> 2: stride ParamUty NA NA Inf [NULL] [NULL]
#> 3: padding ParamUty NA NA Inf 0 [NULL]
#> 4: ceil_mode ParamLgl NA NA 2 FALSE [NULL]
#> 5: count_include_pad ParamLgl NA NA 2 TRUE [NULL]