Torch Entry Point for Categorical Features
Source:R/PipeOpTorchIngress.R
mlr_pipeops_torch_ingress_categ.Rd
Ingress PipeOp that represents a categorical (factor()
, ordered()
and logical()
) entry point to a torch network.
Parameters
select
::logical(1)
WhetherPipeOp
should selected the supported feature types. Otherwise it will err on receiving tasks with unsupported feature types.
Internals
Uses batchgetter_categ()
.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_ltnsr
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Other Graph Network:
ModelDescriptor()
,
TorchIngressToken()
,
mlr_learners_torch_model
,
mlr_pipeops_module
,
mlr_pipeops_torch
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_ltnsr
,
mlr_pipeops_torch_ingress_num
,
model_descriptor_to_learner()
,
model_descriptor_to_module()
,
model_descriptor_union()
,
nn_graph()
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorchIngress
-> PipeOpTorchIngressCategorical
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchIngressCategorical$new(
id = "torch_ingress_categ",
param_vals = list()
)
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
graph = po("select", selector = selector_type("factor")) %>>%
po("torch_ingress_categ")
task = tsk("german_credit")
# The output is a model descriptor
md = graph$train(task)[[1L]]
ingress = md$ingress[[1L]]
ingress$batchgetter(task$data(1, ingress$features), "cpu")
#> torch_tensor
#> 5 5 1 2 3 1 3 1 3 1 4 5 1 2
#> [ CPULongType{1,14} ]