Package index
-
mlr3torchmlr3torch-package - mlr3torch: Deep Learning with 'mlr3'
-
mlr_learners.ft_transformerLearnerTorchFTTransformer - FT-Transformer
-
mlr_learners.mlpLearnerTorchMLP - Multi Layer Perceptron
-
mlr_learners.moduleLearnerTorchModule - Learner Torch Module
-
mlr_learners.tab_resnetLearnerTorchTabResNet - Tabular ResNet
-
mlr_learners.torch_featurelessLearnerTorchFeatureless - Featureless Torch Learner
-
mlr_learners.torchvisionLearnerTorchVision - AlexNet Image Classifier
-
mlr_learners_torchLearnerTorch - Base Class for Torch Learners
-
mlr_learners_torch_imageLearnerTorchImage - Image Learner
-
mlr_learners_torch_modelLearnerTorchModel - Learner Torch Model
-
mlr_tasks_cifarmlr_tasks_cifar10mlr_tasks_cifar100 - CIFAR Classification Tasks
-
mlr_tasks_lazy_iris - Iris Classification Task
-
mlr_tasks_melanoma - Melanoma Image classification
-
mlr_tasks_mnist - MNIST Image classification
-
mlr_tasks_tiny_imagenet - Tiny ImageNet Classification Task
-
mlr_backends_lazyDataBackendLazy - Lazy Data Backend
-
ModelDescriptor() - Represent a Model with Meta-Info
-
model_descriptor_to_learner() - Create a Torch Learner from a ModelDescriptor
-
model_descriptor_to_module() - Create a nn_graph from ModelDescriptor
-
model_descriptor_union() - Union of ModelDescriptors
-
mlr_pipeops_modulePipeOpModule - Class for Torch Module Wrappers
-
TorchIngressToken() - Torch Ingress Token
-
ingress_categ() - Ingress Token for Categorical Features
-
ingress_ltnsr() - Ingress Token for Lazy Tensor Feature
-
ingress_num() - Ingress Token for Numeric Features
-
mlr_pipeops_torchPipeOpTorch - Base Class for Torch Module Constructor Wrappers
-
mlr_pipeops_torch_ingressPipeOpTorchIngress - Entrypoint to Torch Network
-
mlr_pipeops_torch_modelPipeOpTorchModel - PipeOp Torch Model
-
mlr_pipeops_torch_model_classifPipeOpTorchModelClassif - PipeOp Torch Classifier
-
mlr_pipeops_torch_model_regrPipeOpTorchModelRegr - Torch Regression Model
-
batchgetter_categ() - Batchgetter for Categorical data
-
batchgetter_num() - Batchgetter for Numeric Data
-
mlr_pipeops_torch_ingress_categPipeOpTorchIngressCategorical - Torch Entry Point for Categorical Features
-
mlr_pipeops_torch_ingress_ltnsrPipeOpTorchIngressLazyTensor - Ingress for Lazy Tensor
-
mlr_pipeops_torch_ingress_numPipeOpTorchIngressNumeric - Torch Entry Point for Numeric Features
-
mlr_pipeops_torch_lossPipeOpTorchLoss - Loss Configuration
-
mlr_pipeops_torch_optimizerPipeOpTorchOptimizer - Optimizer Configuration
-
mlr_pipeops_torch_callbacksPipeOpTorchCallbacks - Callback Configuration
-
mlr_pipeops_nn_adaptive_avg_pool1dPipeOpTorchAdaptiveAvgPool1D - 1D Adaptive Average Pooling
-
mlr_pipeops_nn_adaptive_avg_pool2dPipeOpTorchAdaptiveAvgPool2D - 2D Adaptive Average Pooling
-
mlr_pipeops_nn_adaptive_avg_pool3dPipeOpTorchAdaptiveAvgPool3D - 3D Adaptive Average Pooling
-
mlr_pipeops_nn_avg_pool1dPipeOpTorchAvgPool1D - 1D Average Pooling
-
mlr_pipeops_nn_avg_pool2dPipeOpTorchAvgPool2D - 2D Average Pooling
-
mlr_pipeops_nn_avg_pool3dPipeOpTorchAvgPool3D - 3D Average Pooling
-
mlr_pipeops_nn_batch_norm1dPipeOpTorchBatchNorm1D - 1D Batch Normalization
-
mlr_pipeops_nn_batch_norm2dPipeOpTorchBatchNorm2D - 2D Batch Normalization
-
mlr_pipeops_nn_batch_norm3dPipeOpTorchBatchNorm3D - 3D Batch Normalization
-
mlr_pipeops_nn_blockPipeOpTorchBlock - Block Repetition
-
mlr_pipeops_nn_celuPipeOpTorchCELU - CELU Activation Function
-
mlr_pipeops_nn_conv1dPipeOpTorchConv1D - 1D Convolution
-
mlr_pipeops_nn_conv2dPipeOpTorchConv2D - 2D Convolution
-
mlr_pipeops_nn_conv3dPipeOpTorchConv3D - 3D Convolution
-
mlr_pipeops_nn_conv_transpose1dPipeOpTorchConvTranspose1D - Transpose 1D Convolution
-
mlr_pipeops_nn_conv_transpose2dPipeOpTorchConvTranspose2D - Transpose 2D Convolution
-
mlr_pipeops_nn_conv_transpose3dPipeOpTorchConvTranspose3D - Transpose 3D Convolution
-
mlr_pipeops_nn_eluPipeOpTorchELU - ELU Activation Function
-
mlr_pipeops_nn_flattenPipeOpTorchFlatten - Flattens a Tensor
-
mlr_pipeops_nn_fnPipeOpTorchFn - Custom Function
-
mlr_pipeops_nn_ft_clsPipeOpTorchFTCLS - CLS Token for FT-Transformer
-
mlr_pipeops_nn_ft_transformer_blockPipeOpTorchFTTransformerBlock - Single Transformer Block for the FT-Transformer
-
mlr_pipeops_nn_gegluPipeOpTorchGeGLU - GeGLU Activation Function
-
mlr_pipeops_nn_geluPipeOpTorchGELU - GELU Activation Function
-
mlr_pipeops_nn_gluPipeOpTorchGLU - GLU Activation Function
-
mlr_pipeops_nn_hardshrinkPipeOpTorchHardShrink - Hard Shrink Activation Function
-
mlr_pipeops_nn_hardsigmoidPipeOpTorchHardSigmoid - Hard Sigmoid Activation Function
-
mlr_pipeops_nn_hardtanhPipeOpTorchHardTanh - Hard Tanh Activation Function
-
mlr_pipeops_nn_headPipeOpTorchHead - Output Head
-
mlr_pipeops_nn_identityPipeOpTorchIdentity - Identity Layer
-
mlr_pipeops_nn_layer_normPipeOpTorchLayerNorm - Layer Normalization
-
mlr_pipeops_nn_leaky_reluPipeOpTorchLeakyReLU - Leaky ReLU Activation Function
-
mlr_pipeops_nn_linearPipeOpTorchLinear - Linear Layer
-
mlr_pipeops_nn_log_sigmoidPipeOpTorchLogSigmoid - Log Sigmoid Activation Function
-
mlr_pipeops_nn_max_pool1dPipeOpTorchMaxPool1D - 1D Max Pooling
-
mlr_pipeops_nn_max_pool2dPipeOpTorchMaxPool2D - 2D Max Pooling
-
mlr_pipeops_nn_max_pool3dPipeOpTorchMaxPool3D - 3D Max Pooling
-
mlr_pipeops_nn_mergePipeOpTorchMerge - Merge Operation
-
mlr_pipeops_nn_merge_catPipeOpTorchMergeCat - Merge by Concatenation
-
mlr_pipeops_nn_merge_prodPipeOpTorchMergeProd - Merge by Product
-
mlr_pipeops_nn_merge_sumPipeOpTorchMergeSum - Merge by Summation
-
mlr_pipeops_nn_preluPipeOpTorchPReLU - PReLU Activation Function
-
mlr_pipeops_nn_regluPipeOpTorchReGLU - ReGLU Activation Function
-
mlr_pipeops_nn_reluPipeOpTorchReLU - ReLU Activation Function
-
mlr_pipeops_nn_relu6PipeOpTorchReLU6 - ReLU6 Activation Function
-
mlr_pipeops_nn_reshapePipeOpTorchReshape - Reshape a Tensor
-
mlr_pipeops_nn_rreluPipeOpTorchRReLU - RReLU Activation Function
-
mlr_pipeops_nn_seluPipeOpTorchSELU - SELU Activation Function
-
mlr_pipeops_nn_sigmoidPipeOpTorchSigmoid - Sigmoid Activation Function
-
mlr_pipeops_nn_softplusPipeOpTorchSoftPlus - SoftPlus Activation Function
-
mlr_pipeops_nn_softshrinkPipeOpTorchSoftShrink - Soft Shrink Activation Function
-
mlr_pipeops_nn_softsignPipeOpTorchSoftSign - SoftSign Activation Function
-
mlr_pipeops_nn_squeezePipeOpTorchSqueeze - Squeeze a Tensor
-
mlr_pipeops_nn_tanhPipeOpTorchTanh - Tanh Activation Function
-
mlr_pipeops_nn_tanhshrinkPipeOpTorchTanhShrink - Tanh Shrink Activation Function
-
mlr_pipeops_nn_thresholdPipeOpTorchThreshold - Treshold Activation Function
-
mlr_pipeops_nn_tokenizer_categPipeOpTorchTokenizerCateg - Categorical Tokenizer
-
mlr_pipeops_nn_tokenizer_numPipeOpTorchTokenizerNum - Numeric Tokenizer
-
mlr_pipeops_nn_unsqueezePipeOpTorchUnsqueeze - Unqueeze a Tensor
-
mlr_pipeops_preproc_torchPipeOpTaskPreprocTorch - Base Class for Lazy Tensor Preprocessing
-
pipeop_preproc_torch() - Create Torch Preprocessing PipeOps
-
mlr_pipeops_trafo_nopPipeOpPreprocTorchTrafoNop - No Transformation
-
mlr_pipeops_trafo_reshapePipeOpPreprocTorchTrafoReshape - Reshaping Transformation
-
mlr_pipeops_augment_center_cropPipeOpPreprocTorchAugmentCenterCrop - Center Crop Augmentation
-
mlr_pipeops_augment_color_jitterPipeOpPreprocTorchAugmentColorJitter - Color Jitter Augmentation
-
mlr_pipeops_augment_cropPipeOpPreprocTorchAugmentCrop - Crop Augmentation
-
mlr_pipeops_augment_hflipPipeOpPreprocTorchAugmentHflip - Horizontal Flip Augmentation
-
mlr_pipeops_augment_random_affinePipeOpPreprocTorchAugmentRandomAffine - Random Affine Augmentation
-
mlr_pipeops_augment_random_choicePipeOpPreprocTorchAugmentRandomChoice - Random Choice Augmentation
-
mlr_pipeops_augment_random_cropPipeOpPreprocTorchAugmentRandomCrop - Random Crop Augmentation
-
mlr_pipeops_augment_random_horizontal_flipPipeOpPreprocTorchAugmentRandomHorizontalFlip - Random Horizontal Flip Augmentation
-
mlr_pipeops_augment_random_orderPipeOpPreprocTorchAugmentRandomOrder - Random Order Augmentation
-
mlr_pipeops_augment_random_resized_cropPipeOpPreprocTorchAugmentRandomResizedCrop - Random Resized Crop Augmentation
-
mlr_pipeops_augment_random_vertical_flipPipeOpPreprocTorchAugmentRandomVerticalFlip - Random Vertical Flip Augmentation
-
mlr_pipeops_augment_resized_cropPipeOpPreprocTorchAugmentResizedCrop - Resized Crop Augmentation
-
mlr_pipeops_augment_rotatePipeOpPreprocTorchAugmentRotate - Rotate Augmentation
-
mlr_pipeops_augment_vflipPipeOpPreprocTorchAugmentVflip - Vertical Flip Augmentation
-
mlr_pipeops_trafo_adjust_brightnessPipeOpPreprocTorchTrafoAdjustBrightness - Adjust Brightness Transformation
-
mlr_pipeops_trafo_adjust_gammaPipeOpPreprocTorchTrafoAdjustGamma - Adjust Gamma Transformation
-
mlr_pipeops_trafo_adjust_huePipeOpPreprocTorchTrafoAdjustHue - Adjust Hue Transformation
-
mlr_pipeops_trafo_adjust_saturationPipeOpPreprocTorchTrafoAdjustSaturation - Adjust Saturation Transformation
-
mlr_pipeops_trafo_grayscalePipeOpPreprocTorchTrafoGrayscale - Grayscale Transformation
-
mlr_pipeops_trafo_normalizePipeOpPreprocTorchTrafoNormalize - Normalization Transformation
-
mlr_pipeops_trafo_padPipeOpPreprocTorchTrafoPad - Padding Transformation
-
mlr_pipeops_trafo_resizePipeOpPreprocTorchTrafoResize - Resizing Transformation
-
mlr_pipeops_trafo_rgb_to_grayscalePipeOpPreprocTorchTrafoRgbToGrayscale - RGB to Grayscale Transformation
-
nn() - Create a Neural Network Layer
-
nn_ft_cls() - CLS Token for FT-Transformer
-
nn_ft_transformer_block() - Single Transformer Block for FT-Transformer
-
nn_geglu() - GeGLU Module
-
nn_graph() - Graph Network
-
nn_merge_cat() - Concatenates multiple tensors
-
nn_merge_prod() - Product of multiple tensors
-
nn_merge_sum() - Sum of multiple tensors
-
nn_reglu() - ReGLU Module
-
nn_reshape() - Reshape
-
nn_squeeze() - Squeeze
-
nn_tokenizer_categ() - Categorical Tokenizer
-
nn_tokenizer_num() - Numeric Tokenizer
-
nn_unsqueeze() - Unsqueeze
-
lazy_tensor() - Create a lazy tensor
-
lazy_shape() - Shape of Lazy Tensor
-
DataDescriptor - Data Descriptor
-
as_lazy_tensor() - Convert to Lazy Tensor
-
as_data_descriptor() - Convert to Data Descriptor
-
assert_lazy_tensor() - Assert Lazy Tensor
-
is_lazy_tensor() - Check for lazy tensor
-
materialize() - Materialize Lazy Tensor Columns
-
t_loss()t_losses() - Loss Function Quick Access
-
TorchLoss - Torch Loss
-
mlr_pipeops_torch_lossPipeOpTorchLoss - Loss Configuration
-
as_torch_loss() - Convert to TorchLoss
-
mlr3torch_losses - Loss Functions
-
cross_entropy - Cross Entropy Loss
-
TorchLoss - Torch Loss
-
mlr_pipeops_torch_optimizerPipeOpTorchOptimizer - Optimizer Configuration
-
as_torch_optimizer() - Convert to TorchOptimizer
-
mlr3torch_optimizers - Optimizers
-
callback_set() - Create a Set of Callbacks for Torch
-
torch_callback() - Create a Callback Descriptor
-
TorchCallback - Torch Callback
-
TorchDescriptor - Base Class for Torch Descriptors
-
TorchIngressToken() - Torch Ingress Token
-
TorchLoss - Torch Loss
-
TorchOptimizer - Torch Optimizer
-
mlr_callback_setCallbackSet - Base Class for Callbacks
-
mlr_callback_set.checkpointCallbackSetCheckpoint - Checkpoint Callback
-
mlr_callback_set.historyCallbackSetHistory - History Callback
-
mlr_callback_set.lr_schedulerCallbackSetLRScheduler - Learning Rate Scheduling Callback
-
mlr_callback_set.lr_scheduler_one_cycleCallbackSetLRSchedulerOneCycle - OneCycle Learning Rate Scheduling Callback
-
mlr_callback_set.lr_scheduler_reduce_on_plateauCallbackSetLRSchedulerReduceOnPlateau - Reduce On Plateau Learning Rate Scheduler
-
mlr_callback_set.progressCallbackSetProgress - Progress Callback
-
mlr_callback_set.tbCallbackSetTB - TensorBoard Logging Callback
-
mlr_callback_set.unfreezeCallbackSetUnfreeze - Unfreezing Weights Callback
-
as_torch_callback() - Convert to a TorchCallback
-
as_torch_callbacks() - Convert to a list of Torch Callbacks
-
mlr_pipeops_torch_callbacksPipeOpTorchCallbacks - Callback Configuration
-
mlr3torch_callbacks - Dictionary of Torch Callbacks
-
mlr_context_torchContextTorch - Context for Torch Learner
-
as_lr_scheduler() - Convert to CallbackSetLRScheduler
-
TorchDescriptor - Base Class for Torch Descriptors
-
auto_device() - Auto Device
-
task_dataset() - Create a Dataset from a Task
-
select_all()select_none()select_grep()select_name()select_invert() - Selector Functions for Character Vectors
-
output_dim_for() - Network Output Dimension
-
infer_shapes() - Infer Shapes