Applies Layer Normalization for last certain number of dimensions.
Credit
Part of this documentation have been copied or adapted from the documentation of torch.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
Parameters
dims
::integer(1)
The number of dimensions over which will be normalized (starting from the last dimension).elementwise_affine
::logical(1)
Whether to learn affine-linear parameters initialized to1
for weights and to0
for biases. The default isTRUE
.eps
::numeric(1)
A value added to the denominator for numerical stability.
Internals
Calls torch::nn_layer_norm()
when trained.
The parameter normalized_shape
is inferred as the dimensions of the last dims
dimensions of the input shape.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_ltnsr
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorch
-> PipeOpTorchLayerNorm
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchLayerNorm$new(id = "nn_layer_norm", param_vals = list())
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
# Construct the PipeOp
pipeop = po("nn_layer_norm", dims = 1)
pipeop
#> PipeOp: <nn_layer_norm> (not trained)
#> values: <dims=1>
#> Input channels <name [train type, predict type]>:
#> input [ModelDescriptor,Task]
#> Output channels <name [train type, predict type]>:
#> output [ModelDescriptor,Task]
# The available parameters
pipeop$param_set
#> <ParamSet(3)>
#> id class lower upper nlevels default value
#> <char> <char> <num> <num> <num> <list> <list>
#> 1: dims ParamInt 1 Inf Inf <NoDefault[0]> 1
#> 2: elementwise_affine ParamLgl NA NA 2 TRUE [NULL]
#> 3: eps ParamDbl 0 Inf Inf 1e-05 [NULL]