Repeat a block n_blocks
times.
Parameters
The parameters available for the block itself, as well as
n_blocks
::integer(1)
How often to repeat the block.
Input and Output Channels
The PipeOp
sets its input and output channels to those from the block
(Graph)
it received during construction.
Credit
Part of this documentation have been copied or adapted from the documentation of torch.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_ltnsr
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorch
-> PipeOpTorchBlock
Active bindings
block
(
Graph
)
The neural network segment that is repeated by thisPipeOp
.
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchBlock$new(block, id = "nn_block", param_vals = list())
Arguments
block
(
Graph
)
A graph consisting primarily ofPipeOpTorch
objects that is to be repeated.id
(
character(1)
)
The id for of the new object.param_vals
(named
list()
)
Parameter values to be set after construction.
Examples
block = po("nn_linear") %>>% po("nn_relu")
po_block = po("nn_block", block,
nn_linear.out_features = 10L, n_blocks = 3)
network = po("torch_ingress_num") %>>%
po_block %>>%
po("nn_head") %>>%
po("torch_loss", t_loss("cross_entropy")) %>>%
po("torch_optimizer", t_opt("adam")) %>>%
po("torch_model_classif",
batch_size = 50,
epochs = 3)
task = tsk("iris")
network$train(task)
#> $torch_model_classif.output
#> NULL
#>