Skip to contents

Squeezes a tensor by calling torch::torch_squeeze() with the given dimension dim.

Input and Output Channels

One input channel called "input" and one output channel called "output". For an explanation see PipeOpTorch.

State

The state is the value calculated by the public method $shapes_out().

Credit

Part of this documentation have been copied or adapted from the documentation of torch.

Parameters

  • dim :: integer(1)
    The dimension to squeeze. If NULL, all dimensions of size 1 will be squeezed. Negative values are interpreted downwards from the last dimension.

Internals

Calls nn_squeeze() when trained.

See also

Other PipeOps: mlr_pipeops_nn_adaptive_avg_pool1d, mlr_pipeops_nn_adaptive_avg_pool2d, mlr_pipeops_nn_adaptive_avg_pool3d, mlr_pipeops_nn_avg_pool1d, mlr_pipeops_nn_avg_pool2d, mlr_pipeops_nn_avg_pool3d, mlr_pipeops_nn_batch_norm1d, mlr_pipeops_nn_batch_norm2d, mlr_pipeops_nn_batch_norm3d, mlr_pipeops_nn_block, mlr_pipeops_nn_celu, mlr_pipeops_nn_conv1d, mlr_pipeops_nn_conv2d, mlr_pipeops_nn_conv3d, mlr_pipeops_nn_conv_transpose1d, mlr_pipeops_nn_conv_transpose2d, mlr_pipeops_nn_conv_transpose3d, mlr_pipeops_nn_dropout, mlr_pipeops_nn_elu, mlr_pipeops_nn_flatten, mlr_pipeops_nn_gelu, mlr_pipeops_nn_glu, mlr_pipeops_nn_hardshrink, mlr_pipeops_nn_hardsigmoid, mlr_pipeops_nn_hardtanh, mlr_pipeops_nn_head, mlr_pipeops_nn_layer_norm, mlr_pipeops_nn_leaky_relu, mlr_pipeops_nn_linear, mlr_pipeops_nn_log_sigmoid, mlr_pipeops_nn_max_pool1d, mlr_pipeops_nn_max_pool2d, mlr_pipeops_nn_max_pool3d, mlr_pipeops_nn_merge, mlr_pipeops_nn_merge_cat, mlr_pipeops_nn_merge_prod, mlr_pipeops_nn_merge_sum, mlr_pipeops_nn_prelu, mlr_pipeops_nn_relu, mlr_pipeops_nn_relu6, mlr_pipeops_nn_reshape, mlr_pipeops_nn_rrelu, mlr_pipeops_nn_selu, mlr_pipeops_nn_sigmoid, mlr_pipeops_nn_softmax, mlr_pipeops_nn_softplus, mlr_pipeops_nn_softshrink, mlr_pipeops_nn_softsign, mlr_pipeops_nn_tanh, mlr_pipeops_nn_tanhshrink, mlr_pipeops_nn_threshold, mlr_pipeops_nn_unsqueeze, mlr_pipeops_torch_ingress, mlr_pipeops_torch_ingress_categ, mlr_pipeops_torch_ingress_ltnsr, mlr_pipeops_torch_ingress_num, mlr_pipeops_torch_loss, mlr_pipeops_torch_model, mlr_pipeops_torch_model_classif, mlr_pipeops_torch_model_regr

Super classes

mlr3pipelines::PipeOp -> mlr3torch::PipeOpTorch -> PipeOpTorchSqueeze

Methods

Inherited methods


Method new()

Creates a new instance of this R6 class.

Usage

PipeOpTorchSqueeze$new(id = "nn_squeeze", param_vals = list())

Arguments

id

(character(1))
Identifier of the resulting object.

param_vals

(list())
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.


Method clone()

The objects of this class are cloneable with this method.

Usage

PipeOpTorchSqueeze$clone(deep = FALSE)

Arguments

deep

Whether to make a deep clone.

Examples

# Construct the PipeOp
pipeop = po("nn_squeeze")
pipeop
#> PipeOp: <nn_squeeze> (not trained)
#> values: <list()>
#> Input channels <name [train type, predict type]>:
#>   input [ModelDescriptor,Task]
#> Output channels <name [train type, predict type]>:
#>   output [ModelDescriptor,Task]
# The available parameters
pipeop$param_set
#> <ParamSet(1)>
#>        id    class lower upper nlevels        default  value
#>    <char>   <char> <num> <num>   <num>         <list> <list>
#> 1:    dim ParamUty    NA    NA     Inf <NoDefault[0]> [NULL]