Transpose 1D Convolution
Transpose 1D Convolution
Credit
Part of this documentation have been copied or adapted from the documentation of torch.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
Parameters
out_channels
::integer(1)
Number of output channels produce by the convolution.kernel_size
::integer()
Size of the convolving kernel.stride
::integer()
Stride of the convolution. Default: 1.padding
::
‘dilation * (kernel_size - 1) - padding’ zero-padding will be added to both sides of the input. Default: 0.output_padding
::integer()
Additional size added to one side of the output shape. Default: 0.groups
::integer()
Number of blocked connections from input channels to output channels. Default: 1bias
::logical(1)
If ‘True’, adds a learnable bias to the output. Default: ‘TRUE’.dilation
::integer()
Spacing between kernel elements. Default: 1.padding_mode
::character(1)
The padding mode. One of"zeros"
,"reflect"
,"replicate"
, or"circular"
. Default is"zeros"
.
Internals
Calls nn_conv_transpose1d
.
The parameter in_channels
is inferred as the second dimension of the input tensor.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_ltnsr
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorch
-> mlr3torch::PipeOpTorchConvTranspose
-> PipeOpTorchConvTranspose1D
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchConvTranspose1D$new(id = "nn_conv_transpose1d", param_vals = list())
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
# Construct the PipeOp
pipeop = po("nn_conv_transpose1d", kernel_size = 3, out_channels = 2)
pipeop
#> PipeOp: <nn_conv_transpose1d> (not trained)
#> values: <out_channels=2, kernel_size=3>
#> Input channels <name [train type, predict type]>:
#> input [ModelDescriptor,Task]
#> Output channels <name [train type, predict type]>:
#> output [ModelDescriptor,Task]
# The available parameters
pipeop$param_set
#> <ParamSet(9)>
#> id class lower upper nlevels default value
#> <char> <char> <num> <num> <num> <list> <list>
#> 1: out_channels ParamInt 1 Inf Inf <NoDefault[0]> 2
#> 2: kernel_size ParamUty NA NA Inf <NoDefault[0]> 3
#> 3: stride ParamUty NA NA Inf 1 [NULL]
#> 4: padding ParamUty NA NA Inf 0 [NULL]
#> 5: output_padding ParamUty NA NA Inf 0 [NULL]
#> 6: dilation ParamUty NA NA Inf 1 [NULL]
#> 7: groups ParamInt 1 Inf Inf 1 [NULL]
#> 8: bias ParamLgl NA NA 2 TRUE [NULL]
#> 9: padding_mode ParamFct NA NA 4 zeros [NULL]