Ingress for a single lazy_tensor
column.
Parameters
shape
::integer()
|NULL
|"infer"
The shape of the tensor, where the first dimension (batch) must beNA
. When it is not specified, the lazy tensor input column needs to have a known shape. When it is set to"infer"
, the shape is inferred from an example batch.
Input and Output Channels
One input channel called "input"
and one output channel called "output"
.
For an explanation see PipeOpTorch
.
See also
Other PipeOps:
mlr_pipeops_nn_adaptive_avg_pool1d
,
mlr_pipeops_nn_adaptive_avg_pool2d
,
mlr_pipeops_nn_adaptive_avg_pool3d
,
mlr_pipeops_nn_avg_pool1d
,
mlr_pipeops_nn_avg_pool2d
,
mlr_pipeops_nn_avg_pool3d
,
mlr_pipeops_nn_batch_norm1d
,
mlr_pipeops_nn_batch_norm2d
,
mlr_pipeops_nn_batch_norm3d
,
mlr_pipeops_nn_block
,
mlr_pipeops_nn_celu
,
mlr_pipeops_nn_conv1d
,
mlr_pipeops_nn_conv2d
,
mlr_pipeops_nn_conv3d
,
mlr_pipeops_nn_conv_transpose1d
,
mlr_pipeops_nn_conv_transpose2d
,
mlr_pipeops_nn_conv_transpose3d
,
mlr_pipeops_nn_dropout
,
mlr_pipeops_nn_elu
,
mlr_pipeops_nn_flatten
,
mlr_pipeops_nn_gelu
,
mlr_pipeops_nn_glu
,
mlr_pipeops_nn_hardshrink
,
mlr_pipeops_nn_hardsigmoid
,
mlr_pipeops_nn_hardtanh
,
mlr_pipeops_nn_head
,
mlr_pipeops_nn_layer_norm
,
mlr_pipeops_nn_leaky_relu
,
mlr_pipeops_nn_linear
,
mlr_pipeops_nn_log_sigmoid
,
mlr_pipeops_nn_max_pool1d
,
mlr_pipeops_nn_max_pool2d
,
mlr_pipeops_nn_max_pool3d
,
mlr_pipeops_nn_merge
,
mlr_pipeops_nn_merge_cat
,
mlr_pipeops_nn_merge_prod
,
mlr_pipeops_nn_merge_sum
,
mlr_pipeops_nn_prelu
,
mlr_pipeops_nn_relu
,
mlr_pipeops_nn_relu6
,
mlr_pipeops_nn_reshape
,
mlr_pipeops_nn_rrelu
,
mlr_pipeops_nn_selu
,
mlr_pipeops_nn_sigmoid
,
mlr_pipeops_nn_softmax
,
mlr_pipeops_nn_softplus
,
mlr_pipeops_nn_softshrink
,
mlr_pipeops_nn_softsign
,
mlr_pipeops_nn_squeeze
,
mlr_pipeops_nn_tanh
,
mlr_pipeops_nn_tanhshrink
,
mlr_pipeops_nn_threshold
,
mlr_pipeops_nn_unsqueeze
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
mlr_pipeops_torch_loss
,
mlr_pipeops_torch_model
,
mlr_pipeops_torch_model_classif
,
mlr_pipeops_torch_model_regr
Other Graph Network:
ModelDescriptor()
,
TorchIngressToken()
,
mlr_learners_torch_model
,
mlr_pipeops_module
,
mlr_pipeops_torch
,
mlr_pipeops_torch_ingress
,
mlr_pipeops_torch_ingress_categ
,
mlr_pipeops_torch_ingress_num
,
model_descriptor_to_learner()
,
model_descriptor_to_module()
,
model_descriptor_union()
,
nn_graph()
Super classes
mlr3pipelines::PipeOp
-> mlr3torch::PipeOpTorchIngress
-> PipeOpTorchIngressLazyTensor
Methods
Method new()
Creates a new instance of this R6 class.
Usage
PipeOpTorchIngressLazyTensor$new(
id = "torch_ingress_ltnsr",
param_vals = list()
)
Arguments
id
(
character(1)
)
Identifier of the resulting object.param_vals
(
list()
)
List of hyperparameter settings, overwriting the hyperparameter settings that would otherwise be set during construction.
Examples
po_ingress = po("torch_ingress_ltnsr")
task = tsk("lazy_iris")
md = po_ingress$train(list(task))[[1L]]
ingress = md$ingress
x_batch = ingress[[1L]]$batchgetter(data = task$data(1, "x"), cache = NULL)
x_batch
#> torch_tensor
#> 5.1000 3.5000 1.4000 0.2000
#> [ CPUFloatType{1,4} ]
# Now we try a lazy tensor with unknown shape, i.e. the shapes between the rows can differ
ds = dataset(
initialize = function() self$x = list(torch_randn(3, 10, 10), torch_randn(3, 8, 8)),
.getitem = function(i) list(x = self$x[[i]]),
.length = function() 2)()
task_unknown = as_task_regr(data.table(
x = as_lazy_tensor(ds, dataset_shapes = list(x = NULL)),
y = rnorm(2)
), target = "y", id = "example2")
# this task (as it is) can NOT be processed by PipeOpTorchIngressLazyTensor
# It therefore needs to be preprocessed
po_resize = po("trafo_resize", size = c(6, 6))
task_unknown_resize = po_resize$train(list(task_unknown))[[1L]]
# printing the transformed column still shows unknown shapes,
# because the preprocessing pipeop cannot infer them,
# however we know that the shape is now (3, 10, 10) for all rows
task_unknown_resize$data(1:2, "x")
#> x
#> <lazy_tensor>
#> 1: <tnsr[]>
#> 2: <tnsr[]>
po_ingress$param_set$set_values(shape = c(NA, 3, 6, 6))
md2 = po_ingress$train(list(task_unknown_resize))[[1L]]
ingress2 = md2$ingress
x_batch2 = ingress2[[1L]]$batchgetter(
data = task_unknown_resize$data(1:2, "x"),
cache = NULL
)
x_batch2
#> torch_tensor
#> (1,1,.,.) =
#> -0.5737 -0.6077 0.0625 -0.1658 -0.0081 1.4944
#> -0.8056 0.6029 1.2988 0.2290 -0.0236 1.9913
#> 0.8736 0.3560 -0.2605 0.3696 0.7775 -0.1488
#> 0.3195 0.3776 -0.5369 -0.4124 0.1608 0.8759
#> 0.3536 -1.9330 0.5448 -0.1176 -0.3764 0.1220
#> 0.0219 -0.3377 -0.8623 0.2729 1.2824 0.9808
#>
#> (2,1,.,.) =
#> 0.7100 0.2297 -0.3551 0.8847 0.6802 -0.9485
#> 0.9071 -0.2859 0.8301 -0.7380 -0.6084 -0.8636
#> 0.3374 -0.5254 0.2115 0.4651 -0.4997 -0.0745
#> 0.1925 0.0021 -1.7767 -1.3540 0.1621 -0.3563
#> -0.5394 -0.2050 -0.2776 -0.3484 0.3824 0.5398
#> 0.8519 1.1419 -0.1751 -0.6636 -0.3797 0.1849
#>
#> (1,2,.,.) =
#> -0.0121 0.0475 1.0001 -0.5685 -0.8993 1.1307
#> 0.4197 0.3273 0.6649 -0.9113 0.8681 0.0831
#> -0.6191 -0.1159 0.7388 -0.1448 0.1863 0.7161
#> 0.7623 -0.9862 0.3531 -0.1233 -0.5650 -0.4871
#> -0.7856 -0.4525 -0.2716 0.5454 -1.1710 0.4721
#> 0.0993 -1.9616 -0.8587 -0.3033 0.4516 0.3749
#>
#> (2,2,.,.) =
#> -0.4878 -0.2316 -0.8320 0.1450 0.8303 0.9350
#> -0.9269 -0.5963 0.5153 -0.7064 0.4522 -0.4934
#> -0.7215 -0.5504 0.4439 -0.8080 0.7182 -0.9682
#> -0.7369 0.2755 1.1690 -1.3619 0.7391 0.0415
#> 0.8617 0.4057 1.0234 -0.0415 0.5933 1.0745
#> ... [the output was truncated (use n=-1 to disable)]
#> [ CPUFloatType{2,3,6,6} ]